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Abstract—The Kronecker array transform (KAT) was intro-
duced to reduce the computational burden in acoustic image
estimation and other 2-dimensional array processing applica-
tions. The KAT can be applied only when the planar microphone
array is separable. In this paper we study the performance of
separable arrays using compressive beamforming algorithms to
estimate the direction of arrival (DOA) of far-field sources and
to recover the signal arriving from a particular direction. Our
analysis extends previous studies based on mutual coherence to
separable arrays, and shows that non-redundant separable arrays
have better mutual coherence than can be obtained using 2D
random arrays. We also derive the space discretization that yields
the minimum coherence, and study the influence of frequency
and the spatial resolution on the coherence. In order to verify
the results, we present the performance of a separable array
in two problems: DOA estimation and signal recovery using
sparse reconstruction, and compare its performance with classical
beamforming techniques. The sparsity-based approach shows
better performance in DOA estimation and great improvement
in time-domain signal recovery.

Index Terms—Microphone arrays, beamforming, source sepa-
ration, signal denoising, compressed sensing.

I. INTRODUCTION

The Kronecker array transform (KAT) was introduced with
the goal of reducing computations in algorithms for acoustic
image estimation under the condition that the microphone
array is designed with a separable geometry [1], [2]. The
KAT can be applied to a number of different acoustic imag-
ing algorithms [2], such as conventional beamforming [3],
DAMAS [4], and covariance-fitting [5]. Moreover, the KAT
has been recently extended to more general beamforming
applications in [6]. And although the use of regularized
optimization [5] and sparse estimation techniques [2] has been
proposed in order to achieve better resolution of the acoustic
images, using either `1 or total variation regularization, the
performance of the accelerated algorithms was not studied
from a compressive sensing point of view.

Application of compressive sensing ideas to beamforming
has been proposed in [7], [8] and, more recently, Xenaki et
al. [9] studied the performance of direction-of-arrival (DOA)
algorithms based on compressive sensing, considering one-
dimensional random arrays, relating performance measures
(such as resolution) to the coherence of the measurement
matrix. The performance of nonrandom arrays was considered

in [10], which used an extension of the restricted isometry
condition (RIP) to find the probability that a set of k-sparse
source directions will be recovered.

In this paper we study the performance of separable arrays
in recovering the directions, intensities and the actual time-
signals of a small number of sound sources impinging on a
two-dimensional array. Our analysis is based on the coherence
of the measurement matrix (following [9]), but extending
previous results in four ways: (i) we consider two-dimensional
arrays, (ii) we consider separable arrays for which the KAT
can be applied, (iii) we evaluate the performance as a function
of the signal frequency, and (iv) we evaluate the recovery
of the time signals. A further contribution is our analysis of
the best way to discretize the look directions. Although there
are methods to improve the resolution of compressive-sensing
beamforming techniques, using grid refinement or the atomic
norm [11], our analysis is restricted in this paper to a fixed,
finite number of look directions. In addition, although there
are source localization methods for broadband signals that
consider the full spectrum of the signal [12], we show here
that, in the case of a small number of sources, processing
each frequency independently already gives good results for
the reconstruction of the time signal coming from a particular
direction.

The remainder of this paper is organized as follows. In
Section II we describe the signal model, while Section III
describes the assumptions on the array and look directions
for application of the Kronecker array transform. Section IV
compares the coherence of measurement matrices obtained
from different choices of arrays as a function of the signal
frequency, and Section V finds the space discretization that re-
sults in minimal coherence. Section VI shows the performance
of the chosen separable array with DOA estimation, Section
VII considers the problem of signal recovery, and Section VIII
concludes the paper.

II. PROBLEM OVERVIEW

Consider a microphone array with NMic microphones, re-
ceiving signals from sources in the far field, discretized in NDir
directions of interest. Each direction is represented by a unitary
vector u, perpendicular to the plane wave traveling from this



direction. The vector u is defined in spherical coordinates in
terms of the polar angle θ and the azimuthal angle φ as

u =

 ux
uy√

1− u2x − u2y

 =

sin θ cosφ
sin θ sinφ

cos θ

 . (1)

Given a signal coming from the direction u and the position
pi of the i-th microphone, we can calculate the time delay
τi, with respect to the origin, for the signal to reach each
microphone, as τi = −uTpi

c , where c is the speed of sound
in the medium.

For a given direction u and an angular frequency ω, we
define a delay vector v(ω : u) containing the frequency delays
of a given direction for the NMic microphones in our array

v(ω : u) =


ejωτ0

ejωτ1

...
ejωτ(NMic−1)

 =


e−jωu

Tp0/c

e−jωu
Tp1/c

...
e−jωu

Tp(NMic−1)/c

 . (2)

Once the NDir directions we will look at are chosen, we define
an [NMic ×NDir] matrix

V(ω) =
[
v(ω : u0) ; v(ω : u1) ; · · · ; v(ω : u(NDir−1))

]
.
(3)

We also define the vector x(ω) containing the windowed
Discrete Fourier Transforms of the signal from all micro-
phones for a frequency ω = k2π/L, 0 ≤ k ≤ L − 1, where
L is the DFT length, and the vector y(ω) containing the far
field signals arriving from each direction:

x(ω) = [x0(ω), x1(ω), · · · , xNMic−1(ω)]T , (4)

y(ω) = [y0(ω), y1(ω), · · · , yNdir−1(ω)]T . (5)

In our model, the signal vector x(ω) received by the
microphone array is the sum of the y(ω) signals with the
correspondent delays applied for each microphone, thus

x(ω) = V(ω) · y(ω). (6)

Our goal is to recover y(ω) from x(ω) and V(ω), which
is an ill-posed problem. We compare the quality of the
estimates ŷ(ω) obtained for all frequencies of interest by
sparse methods with the Delay-and-Sum (DAS) beamformer
and the Minimum Variance Distortionless Response (MVDR)
beamformer [13], as well as the reconstructions of the time
signals yk(t), k = 0, . . . , Ndir − 1.

III. SEPARABLE ARRAYS

When working with a 2-dimensional microphone array,
we can design our system in a specific way to allow the
decomposition of the matrix V as a Kronecker product of
two other matrices, enabling us to explore properties of the
Kronecker product to accelerate our computations [2], [6].
This is done by choosing the microphone positions in our
array and the directions of interest in a separable format.

A 2D separable array has NMic = NMicX × NMicY mi-
crophones on the positions (x, y) = (xi, yj), where i =

1, . . . , NMicX and j = 1, . . . , NMicY. Following the same idea,
a 2D separable grid maps NDirX ×NDirY = NDir u directions,
defined by the first two entries of (1), (ux, uy) = (uxi, uyj),
where i = 1, . . . , NDirX and j = 1, . . . , NDirY.

If both the array and the discrete acoustic grid are separable,
our sensing matrix V can be decomposed as the Kronecker
product of two other matrices [1], [6]:

V = Vx ⊗Vy. (7)

The use of separable arrays allows us to use properties of the
Kronecker Product to reduce the computational complexity of
beamforming and sparse reconstruction algorithms, as shown
in [2], [14], with gains of up to

√
min{NDir, NMic} operations.

For the simulations in this article, a deterministic array
geometry is used instead of a random geometry as suggested
in [9]. A 30 cm linear non-redundant spacings (minimum miss-
ing lags) array [15] is extended to two dimensions as described
in [16], [17]. Although we are using an extended 8-microphone
non-redundant array, any other linear array geometry, such as
uniform linear arrays or a co-prime array [18], can be extended
to a 2D separable array configuration.

We define the directions u on the discrete grid by uniformly
spacing ux and uy between [−1, 1], creating a [33× 33]
separable grid. As a consequence, some u vectors represent
invalid directions, such as u = [1, 1,

√
−1]T , thus estimates

from these spurious directions are ignored. The vector of
directions of interest u is uniformly spaced because this
distribution yields the minimum coherence for low frequencies
and separable arrays, as shown in Section V.

IV. SPARSE RECONSTRUCTION

We use sparse reconstruction techniques to recover an
estimate ŷ(ω) from equation (6) given the manifold matrix V
(obtained from our system’s design) and the measurement
vector x.

To assess our array geometry, we look at the coherence of
V(ω) as a function of the frequency we are reconstructing.
The coherence of a matrix A with normalized columns is
an intuitive measure of the correlation between its columns,
defined as [19]

µ(A) = max
i 6=j

Gij , G =
∣∣AHA

∣∣ , (8)

where Gij is the element on the ith row and jth column of
the Gram matrix G. Note that the columns of 1√

NMic
V are

normalized.
The coherence of a matrix can give us guarantees that our

solution is optimally sparse and unique if certain conditions
are satisfied. If equation Ax = b has a solution vector x such
that

‖x‖0 <
1

2

(
1 + µ(A)−1

)
, (9)

then x is the unique solution with the minimum number of
nonzero elements (`0 norm) [19]–[21]. Therefore, the lower
the coherence, the larger the number of nonzero elements that
can be uniquely recovered. On the other hand, if the signal
is corrupted by noise (thus Ax ≈ b), some sparse estimation
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Figure 1: µ(V) vs frequency for 30 cm 8 × 8 microphones
minimum missing lags (a) vs. random arrays of similar dimen-
sion, and (b) increasing for low frequencies as the resolution
increases

algorithms provide theoretical bounds for the reconstruction
error that are tighter for lower coherence [22], [23].

For separable arrays, the property [24]

µ(V) = µ(Vx ⊗Vy) = max (µ(Vx), µ(Vy)) (10)

can be used to analyze the coherence of the sensing matrix.
This allows us to extrapolate the analysis from [9] to a
2-dimensional system, setting µ(V) as a parameter for the
array performance when using compressive sensing for signal
reconstruction or DOA estimation.

Given our chosen array reconstructing a [33 × 33] discrete
uniform field, both described in Section III, the coherence
of our sensing matrix as a function of the frequency is
seen on Fig. 1a, along with that of several random arrays
of similar dimensions. We can see that the non-redundant
array has the smallest coherence for almost all the frequency
range. From the illustrated data, we can expect this array
geometry to perform best when reconstructing signals with
main components between 9 kHz and 18 kHz.

As we increase the resolution of the reconstructed image,
the lower frequency limit of the region of small coherence
increases (see eq. (15) in section V), reducing the region with
small coherence. This effect is illustrated in Fig. 1b and can be
explained in the following manner: as we increase resolution
the look directions get closer together, turning the neighboring
columns of V more similar and, therefore, increasing its
coherence.

V. MINIMAL COHERENCE SPACE DISCRETIZATION

In this section, we prove that a uniformly distributed scan
grid yields the minimum coherence for low frequencies and
separable array geometry. First, we show this statement for 1D
arrays, where p = [ p 0 0 ]T and u = [ u 0

√
1−u2 ]T , and then

we generalize this result for 2D separable arrays.
Considering the 1D case, define the function gm,n(ω) as

gm,n(ω) =
1

N2
Mic
|v(ω : um)Hv(ω : un)|2, m 6= n (11)

and set gm,n = 0 if m = n. This way, the coherence is
µ(V) = maxm,n

√
gm,n(ω). Substituting [v(ω : ui)]k =

e−j
ω
c uipk in (11), we have

gm,n(ω) =
1

N2
Mic

NMic−1∑
k=0

NMic−1∑
`=0

e−j
ω
c (um−un)(pk−p`). (12)

Note that gm,n(0) = 1 for all m,n, therefore the worst-
case coherence will occur for low frequencies. For each
term e−j

ω
c (um−un)(pk−p`) in the sum with k 6= `, there is

a single term e−j
ω
c (um−un)(p`−pk), which is the conjugate

of the first term. Since the sum of these two terms is
2 cos(ωc (um − un)(pk − p`)) and the sum of the terms with
k = ` is 1

NMic
, (12) can be rewritten as

gm,n(ω) =
1

NMic
+

2

N2
Mic

NMic−1∑
k=0

NMic−1∑
`=k+1

cos
(ω
c

(um − un)(pk − p`)
)
. (13)

Consider that ω is small enough such that

µ(V)2 = gm∗,n∗(ω), (m∗, n∗) = arg min
m,n
|um − un|. (14)

Equation (14) is true if ω is very small so that each cosine
being summed in (13) is a decreasing function with respect to
|um − un|, as in this case gm,n(ω) would be maximized by
picking m and n such that |um−un| is minimum. Since µ(V)
is a continuous function of ω, (14) remains true until ω is high
enough so that gm,n(ω) = gm∗,n∗(ω) for some m 6= m∗ and
n 6= n∗. This way, µ(V)2 = gm∗,n∗(ω) if 0 < ω ≤ ω∗, where

ω∗ = min
ω>0
{ω : µ(V) = gm∗,n∗(ω)}. (15)

Our objective is to obtain the best (u0, u1, · · · , uNDir−1)
such that the coherence µ(V) is minimum, which is achieved
by minimizing µ(V)2. Defining ω1 > 0 as the smallest
critical point of gm∗,n∗(ω), µ(V)2 is a decreasing function
with respect to ∆u∗ for ω < min{ω∗, ω1}, so ∆u∗ must be
maximized. In other words, the set {ui}NDir−1

i=0 that yields the
lowest coherence can be obtained by solving the following
constrained optimization problem:

(u∗0, · · · , u∗NDir−1) = arg max
u0,··· ,uNDir−1

min
i
{ui − ui−1}

s.t. − 1 ≤ u0 ≤ u1 ≤ · · · ≤ uNDir−1 ≤ 1 (16)

Although this may seem a difficult problem, its solution is
straightforward: (16) must satisfy u∗i −u∗i−1 = constant ∀i be-
cause if it were not constant, u∗k−u∗k−1 = mini u

∗
i−u∗i−1 could

be increased by slightly increasing the value of u∗k − u∗k−1
such that k remains the index that minimizes u∗i − u∗i−1, thus
u∗k − u∗k−1 would not maximize the expression. Furthermore,
in order to maximize the minimum interval between ui and
ui−1, the distance between the highest and the lowest element
of {ui}NDir−1

i=0 must be as high as possible. As each ui lies in
the interval [−1, 1], we must have u∗0 = −1 and u∗NDir−1 = 1.



Consequently, the solution for (16) is linearly spaced between
−1 and +1:

u∗i = −1 +
2

NDir − 1
k, 0 ≤ k ≤ NDir − 1. (17)

Therefore, the minimal coherence space discretization is
the uniform distribution if 0 < ω < min{ω∗, ω1}, where
ω∗ is given by (15) and ω1 is the smallest frequency such
that d

dω gm∗,n∗(ω) = 0. Even though ω∗ has no closed-
form expression, it can be calculated numerically using (15).
For instance, using our non-redundant array with NMic = 8,
NDir = 33 and c = 343 m/s, we have ω1 = 2π× 12.64 krad/s
and ω∗ = 2π × 9.17 krad/s, which agrees with Fig. 1a.

For two-dimensional separable arrays, u =
[ ux uy

√
1−u2

x−u2
y ]
T and µ(V) = max{µ(Vx), µ(Vy)}.

The minimal value for µ(V) can only be achieved when both
µ(Vx) and µ(Vy) are minimized, which happens when both
ux and uy follow the uniform distribution (17).

VI. DOA ESTIMATION

In this section, we verify our results using a separable array
to estimate the direction of arrival (DOA) of a sinusoidal
source at a random location with a sinusoidal interference
fixed at the central position (0, 0), and measurement noise with
SNR of 30dB, with sampling frequency of 64kHz and FFTs
with L = 100 points using a rectangular window with 100
points. The DOA of the source of interest is obtained using
a single snapshot by Delay-and-Sum (DAS) beamformers
and by sparse estimation using Orthogonal Matching Pursuit
(OMP) [25], [26]. We also include results obtained using
Regularized Minimum Variance Distortionless Response (Reg-
ularized MVDR) beamformers, designed with the exact noise
covariance matrix (used as a benchmark). In practice MVDR
beamformers need to estimate the noise covariance matrix,
so they are not applicable to the single snapshot case. Since
MUSIC [27] also needs multiple snapshots, we do not include
it in our simulations. The simulations assume both the source
and the interference to be sinusoids with the same magnitude
and frequency f0 and random phase. All three algorithms
search a grid with 33 × 33 equally-spaced directions. To
determine the precision of a single reconstruction, we assume
previous knowledge of the number of sources present. The two
largest values on the reconstructed image are considered the
located sources, and the angle between the source of interest
and the nearest of the two located sources is taken as the
location error.

The DAS beamformer requires no configuration parameters,
and its implementation uses the separability of the matrix V
trough the Kronecker Product (eq. (7)) to reduce its computa-
tional complexity. The regularized MVDR is a variation on the
MVDR beamformer initially proposed in [13], with an added
constant in the main diagonal of the noise covariance matrix
to provide robustness (diagonal loading) [28]. The diagonal
regularization added is of value 10−2. MVDR beamforming
requires previous knowledge of the noise covariance matrix,
and in this article the OMP algorithm is not fed this informa-
tion. The OMP algorithm was set for 1% maximum sparsity
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Figure 2: DOA error cumulative distribution for different
algorithms at (a) 16 kHz and (b) 2 kHz

and 10−3 error stop condition. It also uses the separability of
the matrix V through the Kronecker product to accelerate its
computations, as described in [6], [14].

After 6 × 103 realizations of the DOA experiment with
random directions, we calculate the DOA error distribution for
each algorithm. Fig. 2a represents the cumulative distribution
function of the angular error |θ̂ − θ| for f0 = 16 kHz, a
frequency in the low coherence region for the array, and Fig.
2b is for f0 = 2 kHz, a frequency with a higher coherence (see
Fig. 1a). From these results, we expect smaller deviations from
the ideal DOA when using the OMP, even in low frequencies
with high coherence.

It is worth noting that, in the exceptional case where all
signal directions are in the reconstruction grid, since MVDR
has full noise covariance information, it presents zero DOA
error for all in-grid directions.

VII. SIGNAL RECOVERY

Our goal with this simulation is to recover an arbitrary
signal coming from a specific direction, while there is a second
signal source in the field that will be treated as noise. The
signal estimation is obtained by recovering x(ω) estimates for
all ω in our Discrete Fourier Transform, and performing the
inverse transform to obtain the signal in the time domain.

For the signal recovery, STFT is used with the Hanning
window with 50% overlap as recommended in [29], [30]. We
also pad our signal with zeros at the end of the window,
doubling its size, as [31] suggests to mitigate time aliasing
effects. We compare the reconstruction results obtained by
using the compressive sensing algorithm OMP with those
obtained with DAS and regularized MVDR beamformers. The
parameter settings for the algorithms are the same as discussed
on section VI.

The simulations were run reconstructing a [33 × 33] field,
with the desired signal coming from the central direction
us = [ 0 0 1 ]T , first with the signal being a filtered white noise
with 11 kHz – 17 kHz bandwidth, to operate within the best
coherence margin of the array, as seen on Fig. 1a, and a second
case where the signal bandwidth is 2 kHz – 17 kHz, outside the
low coherence region. The interference signal comes from the
direction un = [ 0 −1

2

√
3

2 ]T , its signal being a filtered white
noise with 0 – 18 kHz bandwidth. Independent Gaussian noise
is added to each microphone to create measurement noise with
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Figure 3: Reconstruction SNR vs interference variance for (a)
11 kHz - 17 kHz signal and (b) 2 kHz - 17 kHz

30 dB Signal-to-Noise Ratio and 150 realizations of each case
were performed.

The SNR for the recovered signals are illustrated in Fig. 3,
where untreated represents the SNR for the direct signal
captured by a microphone located at position [0, 0].

VIII. CONCLUSION

Compressive sensing was shown in [9] to be an effective
solution for the one-dimensional source localization problem
when working with sensor arrays. We extended this result to
2D source localization. We also show that compressive sensing
techniques can be used to reconstruct the signal coming from
a specific direction, similar to a super-directional microphone.

For both applications we show that more precise results
than traditional beamformers can be expected from the OMP
method, without the prior knowledge that MVDR requires.
There are still topics to be explored further, such as carrying
over information between frequency bins when working with
wideband reconstruction, as [12], and using DOA knowledge
as a starting point for the support in the sparse reconstruction.
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